The Development of Intersection Homology Theory
نویسندگان
چکیده
منابع مشابه
Intersection Homology Theory
INTRODUCTION WE DEVELOP here a generalization to singular spaces of the Poincare-Lefschetz theory of intersections of homology cycles on manifolds, as announced in [6]. Poincart, in his 1895 paper which founded modern algebraic topology ([18], p. 218; corrected in [19]), studied the intersection of an i-cycle V and a j-cycle W in a compact oriented n-manifold X, in the case of complementary dim...
متن کاملthe impact of morphological awareness on the vocabulary development of the iranian efl students
this study investigated the impact of explicit instruction of morphemic analysis and synthesis on the vocabulary development of the students. the participants were 90 junior high school students divided into two experimental groups and one control group. morphological awareness techniques (analysis/synthesis) and conventional techniques were used to teach vocabulary in the experimental groups a...
15 صفحه اولthe analysis of the role of the speech acts theory in translating and dubbing hollywood films
از محوری ترین اثراتی که یک فیلم سینمایی ایجاد می کند دیالوگ هایی است که هنرپیش گان فیلم میگویند. به زعم یک فیلم ساز, یک شیوه متأثر نمودن مخاطب از اثر منظوره نیروی گفتارهای گوینده, مثل نیروی عاطفی, ترس آور, غم انگیز, هیجان انگیز و غیره, است. این مطالعه به بررسی این مسأله مبادرت کرده است که آیا نیروی فراگفتاری هنرپیش گان به مثابه ی اعمال گفتاری در پنج فیلم هالیوودی در نسخه های دوبله شده باز تولید...
15 صفحه اولHomology stratifications and intersection homology
A homology stratification is a filtered space with local homology groups constant on strata. Despite being used by Goresky and MacPherson [3] in their proof of topological invariance of intersection homology, homology stratifications do not appear to have been studied in any detail and their properties remain obscure. Here we use them to present a simplified version of the Goresky–MacPherson pr...
متن کاملPersistent Intersection Homology
The theory of intersection homology was developed to study the singularities of a topologically stratified space. This paper incorporates this theory into the already developed framework of persistent homology. We demonstrate that persistent intersection homology gives useful information about the relationship between an embedded stratified space and its singularities. We give, and prove the co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pure and Applied Mathematics Quarterly
سال: 2007
ISSN: 1558-8599,1558-8602
DOI: 10.4310/pamq.2007.v3.n1.a8